Scratching the Surface

Prepping Wooden Covers
Smooth covers as much as possible with scrappers, planes and sand paper
Drill board attachment sewing holes
Bevel and shape covers
Final sanding and cleaning covers of dust

Clear or tinted finishes
Kiwi shoe polish
Apply with soft rag, polish with rough paper towel
Black, neutral, cordovan, oxblood, brown, navy, mid tan, tan

American custom paste wax
Apply with soft rag, polish with rough paper towel
Black, neutral, clear, maple, mahogany, Jacobean, light oak, chestnut, walnut, dark oak, cherry

Deft-Lacquer Spray
Two or three light coats
Burnish with steel wool or fine sand paper after last coat

Shellac
2oz orange flake shellac:8oz denatured alcohol
Two coats, light sanding between coats and after final coat

Clear Coat-Suggested milk paint finish, made by Old Fashioned Milk Paint co.
Acrylic Polymer in a water based emulsion

J. E. Moser’s Simple Success-water based urethane
Two coats, light sanding between coats and after final coat

Golden GAC 200- liquid acrylic polymer emulsion, very hard, non-flexible
Two coats, light sanding between coats and after final coat

Clear Coat, Simple Success
Environmentally safe and non-toxic when dry.
Can appear milky or cloudy if applied to thickly or in humid conditions.

Deft and Shellac
Caution needs to be practiced when using these products.
Good ventilation and protective safety gear are needed.

Milk Paint
Genuine milk paint is technically a calcium-caseinate. That means simply that it is made from milk protein, (also known as casein) and lime, (also known as calcium), plus the earth or mineral pigments.
Mankind since before recorded history has used milk Paint. The oldest painted surfaces on earth were colored with a form of milk paint. Cave drawings and paintings made 8,000 years ago, even as old as 20,000 years ago, were made with a simple composition of milk, lime, and earth pigments. When King Tutankhamen’s tomb was opened in 1924, artifacts found inside the burial chamber had been painted with milk paint.
Milk paint is completely biodegradable, with no VOCS, HAPs or EPA-exempt solvents added.

A dust mask should be worn while mixing and sanding this paint
Powder-mix 1:1 with warm water
Let stand 10 minutes, check thickness add water if needed.
Works best on porous surfaces
1. Paint layer
2. Dry to touch (may use heat, sometime causes a crackle effect after a few layers)
3. Paint second coat
4. Dry
5. Paint third coat, dry, 4th, dry, etc
6. Sand with 220 or 320 sand paper after final coat is dry
7. Burnish with #0000 steel wool
8. Finish with tinted paste wax

Colors I will demo: cream, pitch black, marigold yellow, barn red, federal blue, tavern green

Distressing Wood before painting
Any method the removes or depresses the surface of the cover
1. file edge
2. scoring or scratching with awl
3. gouge
4. rotary tool and burr bit
5. ball peen hammer
6. steel letters & numbers
7. burning

Painted Paper
Mahogany is stable, tight grained and easy to carve.
Because mahogany's stableness I can glue paper to only one side without fear of cupping the board.
Apply a crumbled lightweight piece of walnut red or brown walnut Cave paper to front of wooden board with water resistant wood glue. (Titebond II)

Brown Walnut-walnut dyed, gelatin sized flax
Red Walnut-red iron oxide pigmented, walnut dyed, gelatin sized flax

Steps for prepping painted paper cover
1. apply liberal amount of Titebond II to wood, and spread evenly
2. place over-sized sheet of crumbled Cave paper unto the glued surface
3. press down firmly especially around edges, do not use bone folder.
4. Let dry over night
5. Trim excess paper
6. Drill board attachment sewing holes
7. Bevel and shape
8. Paint with Milk Paint as above
Centipede Stitch
Two-Needles, one length of thread-4 ply waxed linen (4 feet)
#53 drill bit-#1 darning needle
#55 drill bit-#3 darning needle

The centipede stitch is based on the caterpillar binding described in Keith Smith’s Non-Adhesive Bindings Volume III Exposed Spine Sewings. Redesigned to act as a secondary (non-structural) sewing, I attach the centipede to a fully sewn book. Originally I used this method to save binding time and create a more consistent and striking visual effect.

1. start on inside or back of cover
2. begin in pair 1
3. bring needles through each hole
4. working from front, begin with 1L
5. enter 2R, crossover and exit 2L
6. next take 1R
7. enter 3L, crossover and exit 3R
8. take 2L under one thread above
9. enter 4R, crossover and exit 4L
10. take 3R under two threads above
11. enter 5L, crossover and exit 5R
12. take 4L under three threads above
13. enter 6R, crossover and exit 6L
14. take 5R under four threads above
15. form vertical coil of 4 loops between L & R rows
16. vertical coil should be center at the 2nd pair
17. enter 7L, crossover and exit 7R
18. work 6L from R to L
19. under all threads between pairs 2 & 3
20. form coil from top to bottom of 2 coils
21. enter 8R, crossover and exit 8L
22. work 7R, from L to R
23. under all threads between pairs 3 & 4
24. form coil from top to bottom of 4 loops
25. enter 9L, crossover and exit 9R
26. work 8L, from R to L
27. under all threads between pairs 4 & 5
28. form coil from top to bottom of 4 loops
29. stab needle diagonally thru coil from bottom to top
30. snip thread to end that length
31. work 9R, from L to R
32. under all threads between pairs 5 & 6
33. form coil, from top to bottom of 4 loops
34. stab needle diagonally thru coil from bottom to top
35. snip thread to end stitch
Figure 1.12 • In a flatsawn or flat-grained board (T), the growth rings are roughly tangent to the wide face of the board. In an edge-grained or quartersawn board (R), the rings are roughly perpendicular to the wide face.

<table>
<thead>
<tr>
<th>Softwoods</th>
<th>Low</th>
<th>Intermediate</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cedar</td>
<td>Baldcypress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pine, ponderosa</td>
<td>Douglas-fir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pine, sugar</td>
<td>Fir, true</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pine, white</td>
<td>Hemlocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redwood</td>
<td>Larch, western</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spruce</td>
<td>Pine, Jack</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pine, lodgepole</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pine, red</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pine, southern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardwoods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alder</td>
<td>Ash</td>
<td></td>
<td>Beech</td>
</tr>
<tr>
<td>Aspen</td>
<td>Basswood</td>
<td></td>
<td>Cottonwood</td>
</tr>
<tr>
<td>Birch, paper and</td>
<td>Birch, yellow</td>
<td></td>
<td>Elm, American</td>
</tr>
<tr>
<td>Butternut</td>
<td>Elm, rock</td>
<td></td>
<td>Sweetgum</td>
</tr>
<tr>
<td>Cherry</td>
<td>Hackberry</td>
<td></td>
<td>Sycamore</td>
</tr>
<tr>
<td>Walnut</td>
<td>Hickory</td>
<td></td>
<td>Tanoak</td>
</tr>
<tr>
<td>Yellow-poplar</td>
<td>Locust</td>
<td></td>
<td>Tupelo</td>
</tr>
<tr>
<td></td>
<td>Magnolia, southern</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maples</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oaks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pecan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Willow</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 6.3—Tendency to warp during seasoning of various woods.